
Managing a LArSoft Development Environment

with Google Repo

BV

[2014-07-25 Fri 20:09]

This topic describes how to set up a development environment for modify-
ing LArSoft code or developing packages built on top of LArSoft. The meth-
ods here do not make use of "mrb" but do rely on a "Fermilab compatible"
UPS products area which provide the packages satisfying any dependencies
any of the development packages require.

The development area consists of these directories:

source/ a directory where all repositories are cloned

build/ a directory from where building the source is done

install/ a directory where the built binaries are placed

Each of these directories are independent from each other and may be
placed where convenient. Their contents are managed by the various steps
as described below. In the examples below, the use of these as relative
directory paths indicate you should use whatever path locates them. Where
an absolute path is required, the absolute path /path/to will be prepended.
For example:

$ cd source/

$ cd /path/to/build

1 Manual Setup

This section describes how to produce a development environment for a
single package, "lbnecode" a manual manner. It uses as low-level methods as
reasonable but stops before exposing the user to the morass of the underlying
UPS/CET/CMake build system.

1

1.1 Preliminaries

Make the three areas, here assuming they are all next to each other:

$ mkdir source build install

The install/ directory will need to be primed with some UPS �les
which can be copied from the central UPS "products" area for the site. This
example assume you are using BNL's RACF.

$ cp -a /afs/rhic.bnl.gov/lbne/software/products/.up[sd]files install/

1.2 Source

Clone the package repository into the source area

$ cd source/

$ git clone http://cdcvs.fnal.gov/projects/lbnecode

Note, this URL allows anonymous cloning of the repository but does not
allow any commits that you may make to be pushed. Later, if desired, you
can add an additional remote that allows pushes so any commits you may
make can be shared.

From this clone, decide which tag or branch to start with. If you don't
know what is available you can query the repository like:

$ cd source/lbnecode/

$ git tag

$ git branch -a

$ gitk --all

A likely starting point is either the "master" or "develop" branch or some
tag. If you intend to have other people use your modi�cations then starting
from "master" is wise as it will make future merging easier than if you start
from an older tag. However, if you want to explicitly modify the code from
some past tagged release, of courses use that tag next.

Once a starting point is found use its label in place of "<branch-or-tag>"
in the following "checkout" command. If not given then the default branch
will be assumed.

$ git checkout -b feature/MYWORK [<branch-or-tag>]

2

The "feature/MYWORK" follows the convention for holding development.
Pick a unique name for "MYWORK" that indicates the intent of the develop-
ment. It should be brief but evocative. It need not include any identi�er as
to who will be doing the work as any commits to the branch will, as always,
will be attributed to your identity.

1.3 The version lie

The build, which is described below, will result in a UPS "product" binary
package holding �les for any executable, library, include, etc produced by
the build. This package lays out its �les in a pattern that includes a version
string and this version string must be supplied to the UPS "setup" command
by anyone who wishes to use these build outputs.

This version string is intended for release builds but it gets forced on you,
the poor developer. It will be set to whatever value was needed at the time
of the last release build that occurred in the branch you decided to check out
above. Any modi�cations to the source past this release point will likely not
modify this version and thus will create a lie. When reporting any results
produced from a package that is in development you must take care not to
quote them as being due to the release but qualify that the release was the
basis for the development modi�cations.

With those caveats appreciated, you ignore the rest of this section.
To make plain that your development build is not a release you may

modify the release string. It is set here:

$ emacs source/lbnecode/ups/product_deps

Look for a line beginning with "parent". For example:

parent lbnecode v02_03_01

Modify this string to indicate the development. For example, tack on an
identi�er that can be associated with the branch name you chose above.

parent lbnecode v02_03_01MYWORK

The rest of the �le can often be left untouched. If the development
requires a new direct dependency it may need to be added.

3

1.4 Set up environment for building

Before any development is started and before the �rst build of the checked
out code one has to provide a meticulously crafted environment for the brittle
UPS/CET/CMake-based build system to work. This setup is site speci�c
but in general it involves sourcing a shell script associated with a base UPS
"products area" followed by sourcing one associated with the package being
built.

$ source /afs/rhic.bnl.gov/lbne/software/products/setup

$ mkdir -p build/lbnecode

$ cd build/lbnecode

$ source /path/to/source/lbnecode/setup_for_development -p

...

env CC=gcc CXX=g++ FC=gfortran cmake -DCMAKE_INSTALL_PREFIX="/install/path" -DCMAKE_BUILD_TYPE=${CETPKG_TYPE} "${CETPKG_SOURCE}"

The "-p" �ag in the last source indicates a "pro�le" build variant is
desired.

Take note of the "cmake" command echoed by this second script as it will
be used later. In general, building with CMake is best done in a directory
outside the source directory and speci�c to each package:

Also, take note of that this last sourced �le will add �les to your current
working directory which is why it is important to run it from the directory
where build outputs should go.

1.5 Build the package

Next, issue that cmake command which was echoed by setup_for_development.
Take note to edit the absolute path for the install pre�x to suit your desired
layout.

$ cd build/lbnecode/

$ env CC=gcc CXX=g++ FC=gfortran cmake -DCMAKE_INSTALL_PREFIX="/path/to/install" -DCMAKE_BUILD_TYPE=${CETPKG_TYPE} "${CETPKG_SOURCE}"

$ make

1.5.1 Using the build directly

After the "make" the "lbnecode" package is built into the "build/" direc-
tory. In sourcing the "setup_for_development" script your environment
was munged in order to locate the basic OS-level outputs of this build in-
cluding executable and library �les. However, application-level �les may not

4

be yet be found if their location depends on additional environment variables.
Some examples:

FCL �les these are located through the environment variable "FHICL_FILE_PATH".
This variable may be de�ned already but may not explicitly contain
any elements pointing in to the build area. It may contain the relative
paths "." and "./job" which may �nd FCL �les while you remain in
the build/lbnecode/ directory

1.6 Install the package

The build products can be installed as a UPS "product" into the location
speci�ed by the CMAKE_INSTALL_PREFIX directive to the cmake command
with:

$ make install

Note that you should observe the output of this command copying �les
into a location with a directory named with your modi�ed version string as
above.

1.6.1 Using the development UPS products area

If the install/ area was prepped as a UPS "products area" as above then
you will now have your own products area that you or anyone who can access
it may use. Since it only contains the development packages you have built
and relies on the packages from the central UPS products area one must set
up the environment to tell UPS about both. You do this by prepending your
products area to the PRODUCTS environment variable:

$ export PRODUCTS=/path/to/install:$PRODUCTS

This assumes you have already sourced the central site UPS "setup"
script.

You can now see that your package is found by UPS, for example with:

$ ups list -aK+ | grep lbnecode | grep MYWORK

"lbnecode" "v02_03_01MYWORK" "Linux64bit+2.6-2.12" "e5:prof" ""

Where "MYWORK" is the label you added to break the version lie as shown
in section 1.3. To munge your environment to use this package do the usual
dance:

5

$ setup lbnecode v02_03_01MYWORK -q e5:prof

This will munge your environment to give precedence to the installation
in your personal UPS products area. In particular, it will likely shadow any
direct use of the build outputs. You can see this in the example:

echo $LD_LIBRARY_PATH|tr ':' '\n'

/path/to/install/lbnecode/v02_03_01manual-build/slf6.x86_64.e5.prof/lib

/path/to/build/lbnecode/lib

... central UPS products library directories

This means that you will need to do a full "make install" in order to
access the build output following any development of the source.

You may also wish to examine "$FHICL_FILE_PATH" and determine that
an absolute path into the "lbnecode" package in your personal UPS products
area has been added.

$ echo $FHICL_FILE_PATH|tr ':' '\n'

.

./job

/path/to/install/lbnecode/v02_03_01manual-build/job

.

./job

...

Why are the "." and "./job" directories repeated? Dunno, don't ask
me, I didn't write this.

1.6.2 Rebuilding and using with a personal UPS products area

As noted above, if you elect to munge your environment to use the contents
of your personal UPS products area be aware that they will take precedence
over the contents of your build area. This means you must do a "make
install" before you may use the output of the rebuild.

If you are developing multiple packages at once this environment must
also be kept in mind.

2 Using Google Repo

The above procedures in section 1.2 for preparing the source area can be
carried out manually for each package that shall be developed in conjunction.

6

However, this can be tedious and error prone. Some things that must be kept
in mind:

� clone a suite of package source repositories

� assure checkouts of each package are from a consistent point in their
development history

� assure correct build dependencies are used

This last one include the need to correctly use the correct packages from
the centrally installed UPS products except when these packages are sub-
ject to the development e�ort. For these packages one must build them in
proper order and assure that their results are used when building subsequent
packages.

2.1 Source preparation with Repo

To facilitate managing the source code for multiple packages the repo tool
developed by Google for Android development may be used to automate
some steps. This section walks through how to use Repo to prepare the
packages providing the LArSoft source.

Repo is installed simply by downloading the tool into a location that is
picked up in your "$PATH" like so:

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ~/bin/repo

$ chmod +x ~/bin/repo

Repo uses a �le called a "manifest". These should not to be confused
with similarly named but unrelated �les which are part of a certain binary
UPS product installation method. A Repo manifest �le is in XML format
and describes the basic elements of a set of source repositories. In particular
it states for each repository:

� the base URL

� the branch from which to checkout

� the local directory

� the repository name

7

https://code.google.com/p/git-repo/

These last two are usually identical and this last is appended to the base
URL to locate the repository.

Repo expects the manifest to, itself, live in a git repository. This allows
one to track development at a meta-level. Feature branches across multi-
ple repositories can be grouped in a manifest �le which is itself tracked in
a branch of the manifest repository. Multiple manifest �les may also be
maintained.

LBNE maintains a manifest repository for LArSoft and it may be used
with Repo as in this example:

$ cd source/

$ repo init -u https://github.com/drbenmorgan/larsoft-manifest.git

$ repo sync

$ ls -a

. larana lardata larevt larpandora larsim

.. larcore lareventdisplay larexamples larreco .repo

Note, the same top-level directory location conventions from Section 1
are used here and this will become the source area for building.

After the "init" the manifest repository will be cloned into Repo's work-
ing area ".repo/". After the initial "sync" the package source repositories
listed in the manifest will be cloned. These will be left checked out in a
"headless" state not explicitly associated with a branch.

2.2 Initial repository checkouts

Each repository will need to be checked out to a local branch from a suit-
able starting location. This may be done by repeating the "git checkout"
directions from section 1.2 in each repository. If there exists some symmetry
among the repositories one may exploit it by applying the git checkout to
each with a single command:

$ repo forall -c git checkout -b feature/MYWORK [<branch-or-tag>]

Switched to a new branch 'feature/MYWORK'

Switched to a new branch 'feature/MYWORK'

...

$ repo branches

* feature/MYWORK | in all projects

8

3 Building multiple packages

At this point one can manually follow the instructions from section 1.5 for
each package honoring the correct build order. The UPS/CET/CMake build
system encodes this ordering in the ups/products_deps �le found in the
source code. If one wishes to correct the version lie described in section 1.3
each package's products_deps �le will need modi�cation in order to change
the value of the parent setting. In addition, the packages dependencies
satis�ed through UPS are enumerated in this �le in terms of their product
name and version. If any of these products will be supplied by the develop-
ment build and with version strings that do not implement the version lie
then these will need modi�cation to match. These are listed under the line
starting with "product". For example the "larana" package has:

product version

larreco v02_03_01

gcc v4_8_2

If the development of the "larreco" is re�ected with a version string
"v02_03_01MYWORK" then this same version string must be set here.

9

	Manual Setup
	Preliminaries
	Source
	The version lie
	Set up environment for building
	Build the package
	Using the build directly

	Install the package
	Using the development UPS products area
	Rebuilding and using with a personal UPS products area

	Using Google Repo
	Source preparation with Repo
	Initial repository checkouts

	Building multiple packages

